Large and moderate deviations principles for recursive kernel estimators of a multivariate density and its partial derivatives
نویسندگان
چکیده
Abstract: In this paper we prove large and moderate deviations principles for the recursive kernel estimator of a probability density function and its partial derivatives. Unlike the density estimator, the derivatives estimators exhibit a quadratic behaviour not only for the moderate deviations scale but also for the large deviations one. We provide results both for the pointwise and the uniform deviations.
منابع مشابه
Large and moderate deviations principles for kernel estimators of the multivariate regression
Abstract : In this paper, we prove large deviations principle for the Nadaraya-Watson estimator and for the semi-recursive kernel estimator of the regression in the multidimensional case. Under suitable conditions, we show that the rate function is a good rate function. We thus generalize the results already obtained in the unidimensional case for the Nadaraya-Watson estimator. Moreover, we giv...
متن کاملComparison of the Gamma kernel and the orthogonal series methods of density estimation
The standard kernel density estimator suffers from a boundary bias issue for probability density function of distributions on the positive real line. The Gamma kernel estimators and orthogonal series estimators are two alternatives which are free of boundary bias. In this paper, a simulation study is conducted to compare small-sample performance of the Gamma kernel estimators and the orthog...
متن کاملAsymptotic Behaviors of Nearest Neighbor Kernel Density Estimator in Left-truncated Data
Kernel density estimators are the basic tools for density estimation in non-parametric statistics. The k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in which the bandwidth is varied depending on the location of the sample points. In this paper, we initially introduce the k-nearest neighbor kernel density estimator in the random left-truncatio...
متن کاملDensity Estimators for Truncated Dependent Data
In some long term studies, a series of dependent and possibly truncated lifetime data may be observed. Suppose that the lifetimes have a common continuous distribution function F. A popular stochastic measure of the distance between the density function f of the lifetimes and its kernel estimate fn is the integrated square error (ISE). In this paper, we derive a central limit theorem for t...
متن کاملThe stochastic approximation method for the estimation of a multivariate probability density
We apply the stochastic approximation method to construct a large class of recursive kernel estimators of a probability density, including the one introduced by Hall and Patil (1994). We study the properties of these estimators and compare them with Rosenblatt’s nonrecursive estimator. It turns out that, for pointwise estimation, it is preferable to use the nonrecursive Rosenblatt’s kernel esti...
متن کامل